

Kokkedal Industripark 4 DK-2980 Kokkedal Denmark info@eilersen.com Tel +45 49 180 100 Fax +45 49 180 200

MCE2035 PROFIBUS-DP MODUL

Status og vægt overførsel via Profibus-DP

Gælder for:

 Program nr.:
 CONCTR_4.091117.0

 Dokument nr.:
 1117md2035-2010-0b.DOC

 Dato:
 2017-06-29

 Rev.:
 0b

1) INDHOLDSFORTEGNELSE

1) INDHOI	LDSFORTEGNELSE	2
2) INTROE	DUKTION	3
2.1 Introd	luktion	3
2.2 Profib	bus DP specifikation	3
3) MCE201	0 BESKRIVELSE	4
4) MCE960	01 BESKRIVELSE	6
5) DATA U	JDVEKSLING	7
5.1 Profib	ous DP kommunikation v.h.a. PPO	7
5.2 Dataf	ormater	8
5.2.1	Unsigned integer format (16 bit)	8
5.2.2	Signed integer format (32 bit)	8
5.2.3	IEEE754 floating point format (32 bit)	9
5.3 Målet	id	10
5.4 Filtre	ring	10
5.5 Skale	ring	10
6) DATA B	EHANDLING	11
6.1 Nulst	illing, kalibrering og vægt beregning	11
6.1.1	Nulstilling af vejesystem	11
6.1.2	Hjørnekalibrering af vejesystem	11
6.1.3	Beregning af ukalibreret system vægt	11
6.1.4	System kalibrering af vejesystem	12
7) INSTAL	LERING AF SYSTEM	13
7.1 Checl	kliste ved installation	13
8) HARDW	ARE BESKRIVELSE	14
8.1 MCE	2035 oversigt	14
8.2 Tilslu	tning af forsyningsspænding og vejeceller	15
8.3 DIP-s	witch indstillinger	16
8.4 Lysdi	oder	16
8.5 Jump	ere	
8.6 Profit	bus DP konnektor	
8.7 Hardy	vare Selftest	
8.8 Opdat	teringstider	
9) STATUS	S KODER	
10) APPEN	DIKS – PROFIBUS KONFIGURERINGS TIPS	20
10.1 GSE) File	20
10.1.1	Input/Output moduler og data størrelser	20

2) INTRODUKTION

2.1 Introduktion

Dette dokument beskriver brugen af et Eilersen Electric MCE2035 Profibus DP modul, når det indeholder det på forsiden gældende programnavn.

Med det på forsiden angivne program kan MCE2035 Profibus DP modulet i ét telegram overføre status og vægt for op til 4 vejeceller. Vejecellerne er hver især tilsluttet Profibus DP modulet via et vejecelle interface modul.

Det vil være muligt at koble MCE2035 Profibus DP modulet på et Profibus DP netværk, hvor det vil fungere som slave. Det vil således være muligt fra Profibus DP masteren at aflæse status og vægt for de enkelte vejeceller. Funktioner såsom nulstilling, kalibrering og beregning af system vægt(e) **skal** således implementeres på Profibus DP masteren.

Ved hjælp af DIP-switche er det muligt at:

- vælge måletid.
- vælge skalering.
- indkoble et af 3 forskellige FIR filtre.

Udveksling af data mellem master og slave forløber som beskrevet i det efterfølgende.

2.2 Profibus DP specifikation

MCE2035 Profibus DP modulet opfylder følgende Profibus DP specifikationer:

Profibus DP
RS485
Slave
9.6, 19.2, 93.75, 187.5, 500, 1500, 3000, 6000, 12000
0-127
9-pin subD (hun) stik

VIGTIGT: Vejecellemoduler og instrumentering <u>skal placeres uden for det eksplosi-</u> <u>onsfarlige område</u> hvis vejecellerne benyttes i eksplosionsfarligt ATEX (Ex) område. Desuden skal vejeceller og instrumentering være ATEX certificeret.

3) MCE2010 BESKRIVELSE

Nedenfor er MCE2010 vejecellemodulet vist. Før systemet tilsluttes skal vejecellerne tilsluttes vejecellemodulerne.

Bemærk venligst at vejecellen og det modul vejecellen er tilsluttet **SKAL** være mærket med samme vejecelle år/serienummer. Dette står på vejecellens typeskilt og på vejecellemodulet umiddelbart under BNC stikket til vejecellen. Vejeceller og moduler **MÅ IKKE** ombyttes, idet programmet i hver enkelt vejecellemodul er **SPECIELT** beregnet til én (og kun denne ene) vejecelle. Vejecelle modulet **SKAL** forbindes netop til den vejecelle det er beregnet for og omvendt.

Vejecelle modulerne forbindes indbyrdes sammen via det medleverede buskabel (10-leder fladkabel). Med samme kabel tilsluttes MCE9601 terminalmodulet (det med tilslutnings-klemmerne) og MCE2035 Profibus DP modulet.

Alle kontakter (SW1) skal indstilles korrekt inden tilslutning.

Bemærk venligst at kontakterne (SW1) kun aflæses når spændingen tilsluttes. Hvis det er nødvendigt at ændre indstillingen er det nødvendigt at slukke for forsyningen og tænde den igen efter ca. 10 sekunder før MCE2010 vejecelle modulet aflæser den nye indstilling.

Kontakterne SW1.1 til SW1.4 benyttes til at vælge forskellige driftsformer. Nedenstående gælder for den normale standardsoftware i vejecellemodulet. Normalt skal standardindstillingen altid benyttes med mindre andet udtrykkeligt er angivet.

MCE2010 SW1.1 til SW1.4						
SW1 Nr	Standard indstilling Funktion					
1	OFF	Baud rate				
		OFF: 115200				
		ON: 230400				
2	ON	Filter, MSB				
3	ON	Filter, LSB				
4	OFF	Benyttes ikke				

Kontakt SW1.5 til SW1.8 benyttes til at indstille modulets adresse. Alle vejecellemoduler skal have fortløbende adresser, startende med adresse 0 og fremefter med mindre andet udtrykkeligt er angivet. Ingen adresser må springes over og ingen adresser må benyttes af mere end et vejecellemodul. I systemer med 1-8 vejeceller skal SW1.5 altid være OFF.

	MCE2010 SW1.6 til SW1.8						
SW1.5	SW1.6	SW 1.7	SW1.8	Adresse			
OFF	OFF	OFF	OFF	0			
OFF	OFF	OFF	ON	1			
OFF	OFF	ON	OFF	2			
OFF	OFF	ON	ON	3			
OFF	ON	OFF	OFF	4			
OFF	ON	OFF	ON	5			
OFF	ON	ON	OFF	6			
OFF	ON	ON	ON	7			

Der findes tre lamper (LED) der indikerer følgende tilstande:

		MCE2010 LAMPER (LED)
ТХВВ	Grøn	Lyser når MCE2010 sender data. Skal lyse/blinke meget hurtigt så snart systemet er startet op.
D1	Gul	Ingen synkronisering mellem vejecelle modulerne: En eller flere vejeceller er ikke forbundet eller der er dårlig forbindelse i fladkab- let mellem vejecelle modulerne.
SYNC ERR	Rød	Ingen vejecelle synkronisering: Ingen vejecelle forbundet eller dårlig forbindelse til vejecellen.

4) MCE9601 BESKRIVELSE

Nedenfor er vist en oversigt over et MCE9601 terminal modul. MCE9601 modulet benyttes for tilslutning mellem Eilersen Electric's digitale vejecelle bus på den ene side og forsyningsspænding/udstyr på den anden side.

J1 terminal blokken benyttes for tilslutning af følgende:

- Terminalerne **Gnd** og **B** (-) og **A** (+) giver adgang til RS485 bussen for alt udstyr tilsluttet til vejecelle bussen.
- Terminalerne **Gnd** og +**24Vdc** sørger for ekstern spændingsforsyning af udstyret tilsluttet vejecelle bussen. Disse terminaler skal forbindes til en +24VDC spændingsforsyning.
- Terminalerne **Gnd** og **I/O** er det interne synkroniseringssignal der benyttes af vejecelle modulerne. Normalt har disse terminaler ingen ekstern forbindelse og efterlades åbne.

J2 konnektoren benyttes for tilslutning af udstyr (vejecelle moduler, kommunikations moduler etc.) til den digitale vejecelle bus. Dette gøres ved at benytte det medfølgende fladkabel med påmonterede stik.

JU1 jumperen benyttes til hardware synkronisering. Jumperen bør efterlades i den fra fabrikken "default" monterede position **ON**.

LED	Funktion
D1	RS485 Kommunikation. Denne LED bør være ON under normal drift (Faktisk blinker den
(Grøn)	hurtigt, men dette kan opfattes som konstant tændt).
D2	Denne LED bør være OFF under normal drift. Hvis denne lyser, er I/O pin'en på inverteret
(Gul)	polaritet.
D3	Hardware Synkronisering. Denne LED bør være ON under normal drift (Faktisk blinker
(Rød)	den hurtigt, men dette kan opfattes som konstant tændt).

Lysdioderne på MCE9601 modulet har følgende funktioner:

5) DATA UDVEKSLING

5.1 Profibus DP kommunikation v.h.a. PPO

Ved Profibus DP kommunikation med MCE2035 modulet benyttes et såkaldt 'parameterprocess data objekt' (PPO) bestående af 26 bytes. Dette telegram (objekt) benyttes **kun** ved overførsel af data til masteren, idet der **ikke** overføres data fra masteren til slaven. Strukturen for dette telegram er følgende:

Lc		Lc		Lc				Lc		Lc			
Regi	ster	Statı	ıs(0)	Sig	nal(())		Statu	ıs(3)	Sig	nal(3	3)	
0	1	2	3	4	5	6	7	20	21	22	23	24	25

Byte rækkefølgen (MSB/LSB først?) for de enkelte dele af telegrammet afgøres af en jumper. Denne er fra fabrikken normalt sat så MSB kommer først. Efterfølgende vil bit 0 svare til den mindst betydende bit i et register.

LcRegister er et ord (to bytes) der udgør et bit register til indikation af tilsluttede vejeceller detekteret ved opstart. Således vil bit 0-3 være ON, hvis den tilhørende vejecelle (adresse) blev detekteret ved opstart. **LcRegister** overføres altid i **16 bit unsigned integer** format.

LcStatus(X) er et ord (to bytes) der udgør et register som indeholder aktuel status for vejecelle X. LcStatus(X) overføres altid i 16 bit unsigned integer format. Under normal drift vil dette register være 0, men hvis der opstår en fejl vil nogle bits i dette register blive aktiveret og resultere i en fejlkode. Betydningen af de enkelte bit i status registeret kan findes i afsnittet *STATUS KODER*.

LcSignal(X) er et dobbelt ord (fire bytes) der udgør et register som indeholder det aktuelle vægt signal fra vejecelle X. Afhængigt af en jumper vil LcSignal(X) være angivet i enten 32 bit signed integer format eller i IEEE754 floating point format. Denne jumper er default sat så LcSignal(X) overføres i 32 bit signed integer format. Bemærk at værdien kun er gyldig hvis det tilhørende LcStatus(X) register er 0 og dermed indikerer at ingen fejl er detekteret. Skaleringen af vejecelle signalet bestemmes v.h.a. en DIP switch som beskrevet senere.

Da der kun overføres status og vægt for de enkelte vejeceller i telegrammet, **skal** status håndtering, beregning af system vægt(e), nulstilling- og kalibreringsfunktioner implementeres på Profibus DP masteren. Der henvises til kapitlet *DATA BEHANDLING* for en gennemgang af hvorledes dette typisk kan gøres.

5.2 Dataformater

Profibus DP kommunikationen kan overføre data i følgende tre data formater. Om nødvendigt henvises der til anden litteratur for yderligere information om af disse formater.

5.2.1 Unsigned integer format (16 bit)

Følgende er eksempler på decimal tal repræsenteret på 16 bit unsigned integer format:

Decimal	Hexadecimal	Binær (MSB først)
0	0x0000	0000000 00000000
1	0x0001	00000000 000000000000000000000000000000
2	0x0002	00000000 00000010
200	0x00C8	00000000 11001000
2000	0x07D0	00000111 11010000
20000	0x4E20	01001110 00100000

5.2.2 Signed integer format (32 bit)

Følgende er eksempler på decimal tal repræsenteret på 32 bit signed integer format:

Decimal	Hexadecimal	Binær (N	<u>ISB først)</u>		
-20000000	0xFECED300	11111110	11001110	11010011	00000000
-2000000	0xFFE17B80	11111111	11100001	01111011	10000000
-200000	0xFFFCF2C0	11111111	11111100	11110010	11000000
-20000	0xFFFFB1E0	11111111	11111111	10110001	11100000
-2000	0xFFFFF830	11111111	11111111	11111000	00110000
-200	0xffffff38	11111111	11111111	11111111	00111000
-2	Oxfffffff	11111111	11111111	11111111	11111110
-1	Oxffffffff	11111111	11111111	11111111	11111111
0	0x00000000	00000000	00000000	00000000	00000000
1	0x0000001	00000000	00000000	00000000	0000001
2	0x0000002	00000000	00000000	00000000	00000010
200	0x00000C8	00000000	00000000	00000000	11001000
2000	0x000007D0	00000000	00000000	00000111	11010000
20000	0x00004E20	00000000	00000000	01001110	00100000
200000	0x00030D40	00000000	00000011	00001101	0100000
2000000	0x001E8480	00000000	00011110	10000100	10000000
20000000	0x01312D00	0000001	00110001	00101101	00000000

5.2.3 IEEE754 floating point format (32 bit)

Repræsentation af data på IEEE754 floating point format sker som følger:

Byte1			Byte2	Byte3	Byte4	
bit7	bit6 bit0	bit7	bit6 bit0	bit7 bit0	bit7 bit0	
S	2^7 2^1	2^{0}	2 ⁻¹ 2 ⁻⁷	2 ⁻⁸ 2 ⁻¹⁵	2 ⁻¹⁶ 2 ⁻²³	
Sign	Exponent	t	Mantissa	Mantissa	Mantissa	

Formel:

 $Vardi = (-1)^{S} * 2^{(exponent-127)} * (I+Mantissa)$

Eksempel:

Byte1	Byte2	Byte3	Byte4
0100 0000	1111 0000	0000 0000	0000 0000

Værdi = $(-1)^0 * 2^{(129-127)} * (1 + 2^{-1} + 2^{-2} + 2^{-3}) = 7.5$

Bemærk venligst at såfremt der er valgt overførsel af MSB først (default indstilling), vil byten med "sign" komme først i vægtangivelserne, og er der valgt LSB først vil byten med "sign" komme til sidst i vægtangivelserne.

5.3 Måletid

Det er v.h.a. DIP-switche muligt at vælge mellem 4 forskellige måletider. Alle vejeceller samples/midles over en måle periode der bestemmes v.h.a. Sw1.1 og Sw1.2 som følger:

<u>SW1.1</u>	<u>SW1.2</u>	Måletid
OFF	OFF	20 ms
OFF	ON	100 ms
ON	OFF	400 ms
ON	ON	2000 ms

BEMÆRK: Ved normal levering er SW1.1 sat OFF og SW1.2 er sat ON, så 100ms måletid opnås.

De heraf fundne vejecelle signaler (eventuelt filtreret) benyttes i Profibus DP kommunikationen indtil nye signaler opnås ved næste sample periodes udløb.

5.4 Filtrering

Det er v.h.a. DIP-switche muligt at indkoble et af 3 forskellige FIR filtre, som anvendes til filtrering af vejecelle signalerne. Det er således muligt, at sende de ufiltrerede vejecelle signaler opnået over den valgte måleperiode igennem et af følgende FIR filtre, inden at resultaterne sendes på Profibussen:

<u>SW1.4</u>	<u>SW1.3</u>	<u>Nr.</u>	Taps	Frekvens			Dæmpning	
				Tavg 20ms	Tavg 100ms	Tavg 400ms	Tavg 2000ms	
OFF	OFF	0	-	-	-	-	-	-
ON	OFF	1	9	12.0 Hz	2.4 Hz	0.6 Hz	0.12 Hz	-80dB
OFF	ON	2	21	6.0 Hz	1.2 Hz	0.3 Hz	0.06 Hz	-80dB
ON	ON	3	85	1.5 Hz	0.3 Hz	0.075Hz	0.015Hz	-80dB

BEMÆRK: Med begge switche OFF, hvilket er normal indstilling ved levering, udføres der ingen filtrering.

5.5 Skalering

Det er v.h.a. en DIP-switch muligt at vælge den ønskede skalering for vægt signalerne. Skaleringen af vægtsignalerne på Profibussen bestemmes v.h.a. Sw2.1 som følger, idet tabellen viser hvorledes en given vægt repræsenteres på Profibussen afhængigt af switch og jumper indstilling:

	JU7 =	OFF	JU7 = ON		
	(32 bit sign	ed integer)	(IEEE754 floating point)		
Vægt	(normal defa	ult levering)			
[gram]	Sw2.1 = OFF	Sw2.1 = ON	Sw2.1 = OFF	Sw2.1 = ON	
	(1 gram)	(1/10 gram)	(1 gram)	(1/10 gram)	
1,0	1	10	1,000	10,000	
123,4	123	1234	123,000	1234,000	

6) DATA BEHANDLING

6.1 Nulstilling, kalibrering og vægt beregning

Beregning af system vægt(e) foregår ved at summere vægt registrene for de til systemet tilhørende vejeceller. Dette er uddybet nedenfor. **Bemærk** at resultatet kun er gyldigt såfremt alle status registre for de til systemet hørende vejeceller <u>ikke</u> indikerer fejl. Samtidigt skal det bemærkes at det er op til masteren at sørge for at der benyttes konsistente vejecelle data ved beregning af system vægt (de benyttede data skal stamme fra samme telegram).

6.1.1 Nulstilling af vejesystem

Nulstilling af et vejesystem (samtlige vejeceller i det pågældende system) bør udføres efter følgende fremgangsmåde, idet der ikke må forekomme vejecelle fejl under nulstillings forløbet:

- 1) Vejearrangementet bør være tomt og rengjort.
- 2) Profibus DP masteren konstaterer at der ikke er vejecelle fejl, hvorefter den aflæser og gemmer de aktuelle vægt signaler for de til systemet hørende vejeceller i tilhørende nulpunktsregistre:

LcZero[x] = LcSignal[x]

3) Herefter kan den ukalibrerede brutto vægt for vejecelle **X** beregnes som:

LcBrutto[**X**] = LcSignal[**X**] - LcZero[**X**]

6.1.2 Hjørnekalibrering af vejesystem

I systemer hvor belastningen ikke er placeret symmetrisk det samme sted altid (eksempelvis en platform vægt hvor emnet kan placeres tilfældigt på platformen når det skal vejes), kan der herefter foretages en fin kalibrering af et systemets hjørner så vægten viser det samme uanset emnets position. Dette gøres som følger:

- 1) Kontroller at vejearrangementet er tomt. Nulstil vejesystemet.
- 2) Placer en kendt belastning (KalVægt) direkte over vejecellen der skal hjørne kalibreres.
- 3) Udregn den hjørne kalibreringsfaktor som skal multipliceres på vejecellens ukalibrerede bruttovægt for at opnå korrekt visning som:

HjørneKalFaktor[x] = (KalVægt)/(LcBrutto[x])

Herefter benyttes den udledte hjørne kalibreringsfaktor til beregning af den kalibrerede bruttovægt for vejecellen som følger:

LcBruttoKal[x] = HjørneKalFaktor[x] * LcBrutto[x]

6.1.3 Beregning af ukalibreret system vægt

På baggrund af vejecelle brutto værdierne (LcBrutto[x] eller LcBruttoKal[x]), uanset om de er hjørne kalibreret eller ej, kan der beregnes en ukalibreret system vægt som enten:


```
Brutto = LcBrutto[X1] + LcBrutto[X2] + ...
eller:
Brutto = LcBruttoKal[X1] + LcBruttoKal[X2] + ...
```

6.1.4 System kalibrering af vejesystem

På baggrund af den ukalibrerede system vægt kan der laves en system kalibrering som følger:

- 1) Kontroller at vejearrangementet er tomt. Nulstil vejesystemet.
- 2) Placer en kendt belastning (KalVægt) på vejearrangementet. **BEMÆRK:** For at opnå korrekt kalibrering af systemet anbefales det, at der benyttes en kalibrerings vægt, som er minimum 50% af systemets kapacitet.
- 3) Udregn den kalibreringsfaktor som skal multipliceres på den ukalibrerede systemvægt for at opnå korrekt visning som:

KalFaktor = (KalVægt) / (Aktuel Brutto)

Herefter benyttes den udledte kalibreringsfaktor til beregning af den kalibrerede system vægt som følger:

```
BruttoKal = KalFaktor * Brutto
```

Såfremt den fundne kalibreringsfaktor falder uden for intervallet 0.9 til 1.1 er der højst sandsynligt noget galt med den mekaniske del af systemet. Dette gælder dog ikke systemer, hvor der ikke er vejeceller under alle systemets understøtningspunkter. For eksempel vil man på en tre benet tank med kun en vejecelle få en kalibreringsfaktor på ca. 3 p.g.a. de to "dummy" ben.

7) INSTALLERING AF SYSTEM

7.1 Checkliste ved installation

Ved installering af system bør følgende punkter gennemgås:

- Profibus DP masteren konfigureres til at kommunikere med MCE2035 Profibus DP modulet v.h.a. den medfølgende GSD fil. Ved konfigurering med GSD filen vælges en MCE2035 stations type. Der henvises til appendiks for tips vedrørende brug af GSD file.
- 2) Alle hardware tilslutninger laves som beskrevet nedenfor.
- 3) Vejecellerne monteres mekanisk og tilsluttes Profibus DP modulet via deres tilhørende vejecelle interface modul. Vejecelle adresserne indstilles v.h.a. DIP-switchene på vejecelle interface modulerne, så de er fortløbende fra adresse 0 (0-3).
- 4) Ved brug af DIP-switche vælges ønsket måletid, filter og skalering.
- 5) Profibus DP modulet tilsluttes Profibus DP netværket, og der foretages eventuelt terminering ved den pågældende Profibus DP slave.
- 6) Profibus DP modulets adresse indstilles v.h.a. Sw2.2- Sw2.8. Strømmen tilsluttes og Profibus DP kommunikationen startes.
- 7) Kontroller at Profibus DP modulets røde lysdiode (PBE) IKKE lyser, og at de gule lysdioder (DES og RTS) lyser/blinker. Kontroller at TXBB lysdioden på Profibus DP modulet lyser og at TXBB lysdioderne på vejecelle interface modulerne ligeledes lyser (kan blinke svagt).
- 8) Kontroller at Profibus DP modulet har fundet de korrekte vejeceller (**LcRegister**), og at der ikke indikeres vejecelle fejl (**LcStatus**(**x**)).
- 9) Kontroller at hver enkelt vejecelle giver signal (**LcSignal**(**x**)) ved skiftevis at belaste over de enkelte vejeceller (eventuelt med en kendt last).

Systemet er nu installeret, og der foretages nulstilling og finkalibrering som beskrevet tidligere. Endelig kontrolleres at vejesystemet(erne) returnerer en værdi svarende til en kendt aktuel belastning.

Bemærk at der i ovenstående vejledning ikke er taget hensyn til hvilke funktioner der er implementeret på Profibus DP masteren.

8) HARDWARE BESKRIVELSE

8.1 MCE2035 oversigt

Følgende figur er en oversigt over hvorledes et MCE2035 Profibus DP system er opbygget med fire MCE2010 vejecelle moduler og et MCE9601 tilslutningsmodul:

8. RS485-B(negative line) / (Siemens : A-line)

8.2 Tilslutning af forsyningsspænding og vejeceller

Dette kapitel beskriver tilslutningen af forsyningsspænding og vejeceller til MCE2035 modulet.

VIGTIGT: Den anvendte forsyningsspænding skal være stabil og fri for transienter. Det kan således være nødvendigt, at anvende en separat forsyningsspænding der er dedikeret til vægtsystemet, og som ikke tilsluttes andet udstyr.

MCE2035 modulets 10 polede stik (J2) forbindes til det 10 polede stik på vejecelle interface modulerne (MCE2010) og til det 10 polede stik på MCE9601 tilslutnings modulet ved brug af det medfølgende fladkabel med påmonterede stik. Gennem dette bus kabel opnås tilslutning af forsyning til de enkelte moduler ligesom der kan overføres data fra vejecelle modulerne til MCE2035 modulet.

MCE9601 modulet har følgende forbindelser i det blå stik (J1):

MCE9601 KLEMME	TILSLUTNING
GND	-
B (DATA-)	-
A (DATA+)	-
GND	-
+24V	+24VDC (Vin)
GND	0 VDC (GNDin)
I/O	-

MCE2035 Profibus DP modulets 10 polede stik (J2) har følgende forbindelser:

MCE2035 J2 STIK	FUNKTION
J2.1 - J2.2	RS485-B (DATA-)
J2.3 - J2.4	RS485-A (DATA+)
J2.5 - J2.6	0 VDC (GNDin)
J2.7 - J2.8	+24VDC (Vin)
J2.9 - J2.10	I/O linie

8.3 DIP-switch indstillinger

Profibus DP modulet er forsynet med en 4 polet DIP-switch blok som har følgende betydning:

SWITCH	FUNKTION
Sw1.1-Sw1.2	Måletid
	Benyttes til valg af ønsket måletid som beskrevet i et tidligere kapitel. Bemærk at disse switche kun aflæses ved power-on.
Sw1.3-Sw1.4	Filtrering
	Benyttes til valg af ønsket filter som beskrevet i et tidligere kapitel. Bemærk at disse switche kun aflæses ved power-on.

og en 8 polet DIP-switch blok som har følgende betydning:

<u>SWITCH</u>	FUNKTION
Sw2.1	Skalering
	Benyttes til valg af ønsket skalering som beskrevet i et tidligere kapitel. Bemærk at disse switche kun aflæses ved power-on.
Sw2.2-Sw2.8	Indstilling af Profibus DP kommunikations adresse
	Adressen indstilles idet DIP-switchene er binært kodet, så Sw2.2 er MSB og Sw2.8 er LSB. Bemærk at disse switche kun aflæses ved power-on.

8.4 Lysdioder

Profibus DP modulet er forsynet med 6 lysdioder. Disse lysdioder har følgende betydning:

LYSDIODE	FUNKTION
TXBB	Kommunikation med vejeceller
(Grøn LED)	Profibus DP modul kommunikerer med vejeceller
D1	Reserveret til fremtidig brug
(Grøn LED)	
D2	Reserveret til fremtidig brug
(Grøn LED)	
PBE	Profibus Error (ved initialisering af SPC3)
(Rød LED)	SPC3 Profibus DP kontrolleren blev ikke initialiseret korrekt.
DES	Data Exchange State
(Gul LED)	Udveksling af data mellem Profibus DP slave og master.
RTS	RtS signal (SPC3)
(Gul LED)	Profibus DP modulet sender til masteren.

8.5 Jumpere

Profibus DP modulet er forsynet med 7 jumpere. Disse jumpere har følgende funktion:

JUMPER	FUNKTION
JU1	Reserveret til fremtidig brug
	(normalt default OFF ved levering)
JU2-JU4	Reserveret til fremtidig brug (terminering)
	(normalt default OFF ved levering)
JU6	Reserveret til fremtidig brug
	(normalt default OFF ved levering)
JU7	Valg af (32 Bit Signed Integer) / (IEEE754) data format
	Jumperen afgør om vægtangivelserne i telegrammet er i <i>32 bit signed integer</i> eller i <i>IEEE754 floating point</i> format.
	OFF: 32 bit signed integer format (normalt default ved levering)
	ON: IEEE754 floating point format
JU8	Valg af LSB/MSB data format
	Jumperen afgør byte rækkefølgen hvorved data sendes/modtages.
	OFF: LSB først
	ON: MSB først (normalt default ved levering)

8.6 Profibus DP konnektor

Profibus DP modulet er forsynet med et ni polet hun subD stik (J1) for tilslutning til Profibus DP netværket. Stikket er et <u>standard</u> Profibus DP stik. Terminering af Profibussen bør ske i kablets subD stik (han). De enkelte forbindelser i stikket har følgende betydning:

J1 FORBINDELSE	FUNKTION
J1.1	Benyttes ikke
J1.2	Benyttes ikke
J1.3	RS485-A (positiv linie) (Siemens betegnelse: B linie)
J1.4	Request to Send (RTS)
J1.5	0 VDC (Gnd)
J1.6	+5VDC (Vout)
J1.7	Benyttes ikke
J1.8	RS485-B (negativ linie) (Siemens betegnelse: A linie)
J1.9	Benyttes ikke

Bemærk at nogle fabrikater benytter forskellig betegnelse for RS485-A og RS485-B linierne. Derfor er liniernes polaritet angivet for en sikkerheds skyld.

8.7 Hardware Selftest

Ved strømtilslutning af Profibus DP modulet foretager dette en selftest. Testen bevirker at lysdioderne D1, D2 og PBE kortvarigt en efter en tænder og slukker.

8.8 Opdateringstider

Bemærk at opdateringstider over Profibus DP kommunikationen afhænger af den specifikke Profibus DP konfigurering (valgt baudrate, antal slaver, skan tider m.m.).

9) STATUS KODER

Statuskoder for de tilsluttede vejeceller optræder som et 4 cifret hexadecimalt tal. Hvis der optræder flere fejl samtidigt, er de enkelte fejlkoder OR'et sammen.

KODE	BETYDNING
(Hex)	
0001	Ugyldig/manglende 'sample' ID
	Dårlig forbindelse mellem kommunikationsmodul og vejecellemodul.
0002	Vejecelle timeout
	Kontroller at vejecellen er tilsluttet vejecellemodulet.
0004	Vejecelle ikke synkroniseret
	Dårlig forbindelse mellem vejecelle og vejecellemodul.
0008	Hardware synkroniseringsfejl
	Kabel mellem vejecelle moduler kortsluttet eller afbrudt.
0010	Power fejl
	Forsyningsspænding til vejeceller er for lav.
0020	Overflow i vægt beregning
	Intern fejl i vejecelle modul.
0040	Ugyldig/manglende 'latch' ID
	Dårlig forbindelse mellem kommunikationsmodul og vejecellemodul.
0080	Intet svar fra vejecellemodul
	Der modtages ingen data fra dette vejecellemodul. Årsagen kan være at veje- cellemodulet er fjernet, ikke har forsyningsspænding eller at forbindelsen mellem vejecellemodulet og kommunikationsmodulet og afbrudt
0100	Reserveret til fremtidie brug
0100	Reserveret til fremtidig brug
0200	Reserveret til fremtidig brug
0400	
0800	D [*] rlig forkindeleg mellem kommunikationen odul og usionelle medul. Hele
	alle telegrammer fra kommunikationsmodul modtages i vejecelle modul.
1000	Reserveret til fremtidig brug
2000	Reserveret til fremtidig brug
4000	Reserveret til fremtidig brug
8000	Reserveret til fremtidig brug

10) APPENDIKS – PROFIBUS KONFIGURERINGS TIPS

10.1 GSD File

Den leverede GSD file kan benyttes til konfigurering af PROFIBUS masteren (PLC) så den kommunikerer med MCE2035 PROFIBUS enheden.

Vær venligst opmærksom på følgende tips ved konfigurering af PROFIBUS masteren vha. den medfølgende GSD file:

10.1.1 Input/Output moduler og data størrelser

Mængden af data der udveksles mellem PROFIBUS masteren og MCE2035 PROFIBUS enheden er specificeret I den medfølgende GSD file.

Den medfølgende GSD file for denne applikation (se forsiden af denne manual) specificerer input og output modulerne der skal benyttes som følger:

```
;-----; Modules for the MCE2035
;-----
Module= "13 Word DI" 0x5C
EndModule
```

PROFIBUS masteren skal konfigureres PROFIBUS konfigurerings værktøjet PRÆCIST som følger:

- Vælg ét (og KUN ét) universelt INPUT modul af ovenstående type som specificerer "13 Word DI".
- 2) Ingen OUTPUT modul vælges, idet OUTPUT data ikke er tilgængelige/benyttes.
- 3) Benyt IKKE nogen andre typer moduler når PROFIBUS masteren konfigureres.

Hermed konfigureres systemet til at bruge 13 input words (svarende til 26 input bytes) og 0 output bytes, svarende til figuren der er vist tidligere.

BEMÆRK: Vær venligst opmærksom på at udtrykkene "input" og "output" kan være forvirrende, og benyttes forskelligt fra producent til producent. I denne manual er disse udtryk altid set fra PROFIBUS masterens (PLC'ens) syn. Derfor refereres data fra MCE2035 enheden til PLC som "input" data, mens data fra PLC til MCE2035 enheden refereres til som "output" data.